Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Aquila Optimizer: A novel meta-heuristic optimization algorithm

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2021

Aquila Optimizer: A novel meta-heuristic optimization algorithm

0 Datasets

0 Files

English
2021
Computers & Industrial Engineering
Vol 157
DOI: 10.1016/j.cie.2021.107250

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Amir Gandomi
Amir Gandomi

University of Techology Sdyney

Verified
Laith Abualigah
Dalia Yousri
Mohamed Abd Elaziz
+3 more

Abstract

This paper proposes a novel population-based optimization method, called Aquila Optimizer (AO), which is inspired by the Aquila’s behaviors in nature during the process of catching the prey. Hence, the optimization procedures of the proposed AO algorithm are represented in four methods; selecting the search space by high soar with the vertical stoop, exploring within a diverge search space by contour flight with short glide attack, exploiting within a converge search space by low flight with slow descent attack, and swooping by walk and grab prey. To validate the new optimizer’s ability to find the optimal solution for different optimization problems, a set of experimental series is conducted. For example, during the first experiment, AO is applied to find the solution of well-known 23 functions. The second and third experimental series aims to evaluate the AO’s performance to find solutions for more complex problems such as thirty CEC2017 test functions and ten CEC2019 test functions, respectively. Finally, a set of seven real-world engineering problems are used. From the experimental results of AO that compared with well-known meta-heuristic methods, the superiority of the developed AO algorithm is observed. Matlab codes of AO are available at https://www.mathworks.com/matlabcentral/fileexchange/89381-aquila-optimizer-a-meta-heuristic-optimization-algorithm and Java codes are available at https://www.mathworks.com/matlabcentral/fileexchange/89386-aquila-optimizer-a-meta-heuristic-optimization-algorithm.

How to cite this publication

Laith Abualigah, Dalia Yousri, Mohamed Abd Elaziz, Ahmed A. Ewees, Mohammed A. A. Al‐qaness, Amir Gandomi (2021). Aquila Optimizer: A novel meta-heuristic optimization algorithm. Computers & Industrial Engineering, 157, pp. 107250-107250, DOI: 10.1016/j.cie.2021.107250.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Computers & Industrial Engineering

DOI

10.1016/j.cie.2021.107250

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access