0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper proposes a novel population-based optimization method, called Aquila Optimizer (AO), which is inspired by the Aquila’s behaviors in nature during the process of catching the prey. Hence, the optimization procedures of the proposed AO algorithm are represented in four methods; selecting the search space by high soar with the vertical stoop, exploring within a diverge search space by contour flight with short glide attack, exploiting within a converge search space by low flight with slow descent attack, and swooping by walk and grab prey. To validate the new optimizer’s ability to find the optimal solution for different optimization problems, a set of experimental series is conducted. For example, during the first experiment, AO is applied to find the solution of well-known 23 functions. The second and third experimental series aims to evaluate the AO’s performance to find solutions for more complex problems such as thirty CEC2017 test functions and ten CEC2019 test functions, respectively. Finally, a set of seven real-world engineering problems are used. From the experimental results of AO that compared with well-known meta-heuristic methods, the superiority of the developed AO algorithm is observed. Matlab codes of AO are available at https://www.mathworks.com/matlabcentral/fileexchange/89381-aquila-optimizer-a-meta-heuristic-optimization-algorithm and Java codes are available at https://www.mathworks.com/matlabcentral/fileexchange/89386-aquila-optimizer-a-meta-heuristic-optimization-algorithm.
Laith Abualigah, Dalia Yousri, Mohamed Abd Elaziz, Ahmed A. Ewees, Mohammed A. A. Al‐qaness, Amir Gandomi (2021). Aquila Optimizer: A novel meta-heuristic optimization algorithm. Computers & Industrial Engineering, 157, pp. 107250-107250, DOI: 10.1016/j.cie.2021.107250.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Computers & Industrial Engineering
DOI
10.1016/j.cie.2021.107250
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access