0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessEl desarrollo de nuevas moléculas es un proceso que requiere de múltiples etapas y los ensayos clínicos para verificar su eficacia cuesta miles de millones de dólares cada año. El aprendizaje automático es una herramienta que está avanzando rápidamente en el reconocimiento de imágenes, voz y texto, y trabajar In silico aumentaría la capacidad de predecir y priorizar la función de un medicamento. En esta investigación nos preguntamos si la función de los medicamentos de uso terapéutico se puede predecir a partir de la configuración estereoquímica de la molécula. Nosotros usamos redes neuronales convolucionales para predecir el uso terapéutico de fármacos, entrenadas tanto con información bidimensional como con información tridimensional de su estructura química. El modelo entrenado solamente con seis vistas de la información 3D de la estructura molecular mejoró la exactitud en un 10 respecto al modelo entrenado con la información 2D.
Jorge Mario Martinez Conde, Alberto Patino Vanegas (2021). Aprendizaje del uso terapéutico de fármacos a partir de la información espacial tridimensional de su estructura molecular con redes neuronales convolucionales. DYNA, 88(219), pp. 247-255, DOI: 10.15446/dyna.v88n219.92778.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
2
Datasets
0
Total Files
0
Language
Spanish; Castilian
Journal
DYNA
DOI
10.15446/dyna.v88n219.92778
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access