Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Join our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessDespite the extensive use of mortar materials in constructions over the last decades, there is not yet a robust quantitative method, available in the literature, which can reliably predict mortar strength based on its mix components. This limitation is due to the highly nonlinear relation between the mortar\'s compressive strength and the mixed components. In this paper, the application of artificial neural networks for predicting the compressive strength of mortars has been investigated. Specifically, surrogate models (such as artificial neural network models) have been used for the prediction of the compressive strength of mortars (based on experimental data available in the literature). Furthermore, compressive strength maps are presented for the first time, aiming to facilitate mortar mix design. The comparison of the derived results with the experimental findings demonstrates the ability of artificial neural networks to approximate the compressive strength of mortars in a reliable and robust manner.
Panagiotis Asteris, Maria Apostolopoulou, Athanasia D. Skentou, Αντωνία Μοροπούλου (2019). Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars. , 24(4), DOI: https://doi.org/10.12989/cac.2019.24.4.329.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.12989/cac.2019.24.4.329
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access