0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAs a green and eco-friendly technology, triboelectric nanogenerator (TENG) can harvest energy from human motion to generate electricity, so TENGs have been widely applied in wearable electronic devices to replace traditional batteries. However, the surface of these TENGs is easily contaminated and breeds bacteria, which is a threat to human health. Here, we report an antibacterial composite film-based triboelectric nanogenerator (ACF-TENG) that uses Ag-exchanged zeolite (Ag-zeolite) and polypropylene (PP) composite film as the triboelectric layer. Adding a small amount of Ag-zeolite with excellent antibacterial properties can increase the dielectric permittivity and improve the surface charge density of composite films, which enhances the output performance of the ACF-TENG. The open-circuit voltage (VOC), short-circuit current (ISC), and transferred charge (QTr) of the ACF-TENG are about 193.3, 225.4, and 233.3% of those of a pure PP film-based TENG, respectively. Because of the silver in the Ag-zeolite, the ACF-TENG can effectively kill Escherichia coli and fungi. When used in insoles, the ACF-TENG can resist the athlete’s foot fungus effectively and work as a power source to light up light-emitting diodes and charge capacitors. The ACF-TENG has wide application prospects in self-powered medical and healthcare electronics.
Guang Qin Gu, Chang Bao Han, Jingjing Tian, Cun Xin Lu, Chuan He, Tao Jiang, Zhou Li, Zhong Lin Wang (2017). Antibacterial Composite Film-Based Triboelectric Nanogenerator for Harvesting Walking Energy. , 9(13), DOI: https://doi.org/10.1021/acsami.7b00230.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
8
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acsami.7b00230
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access