Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Anatomically correct three-dimensional coronary artery reconstruction using frequency domain optical coherence tomographic and angiographic data: head-to-head comparison with intravascular ultrasound for endothelial shear stress assessment in humans

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2015

Anatomically correct three-dimensional coronary artery reconstruction using frequency domain optical coherence tomographic and angiographic data: head-to-head comparison with intravascular ultrasound for endothelial shear stress assessment in humans

0 Datasets

0 Files

English
2015
EuroIntervention
Vol 11 (4)
DOI: 10.4244/eijy14m06_11

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Patrick W. Serruys
Patrick W. Serruys

Imperial College London

Verified
Michail I. Papafaklis
Christos V. Bourantas
Taishi Yonetsu
+12 more

Abstract

To develop a methodology that permits accurate 3-dimensional (3D) reconstruction from FD-OCT and angiographic data enabling reliable evaluation of the ESS distribution, and to compare the FD-OCT-derived models against the established models based on angiography/IVUS.Fifteen patients (17 coronary arteries) who underwent angiography, FD-OCT and IVUS examination during the same procedure were studied. The FD-OCT and IVUS lumen borders were placed onto the 3D luminal centreline derived from angiographic data. Three-dimensional geometry algorithms and anatomical landmarks were used to estimate the orientation of the borders appropriately. ESS was calculated using computational fluid dynamics. In 188 corresponding consecutive 3-mm segments, FD-OCT- and IVUS-derived models were highly correlated for lumen area (r=0.96) and local ESS (r=0.89) measurements. FD-OCT-based 3D reconstructions had a high diagnostic accuracy for detecting regions exposed to proatherogenic low ESS identified on the IVUS-based 3D models, considered as the gold standard (receiver operator characteristic area under the curve: 94.9%).FD-OCT-based 3D coronary reconstruction provides anatomically correct models and permits reliable ESS computation. ESS assessment in combination with the superior definition of plaque characteristics by FD-OCT is expected to provide valuable insights into the effect of the haemodynamic environment on the development and destabilisation of high-risk plaques.

How to cite this publication

Michail I. Papafaklis, Christos V. Bourantas, Taishi Yonetsu, Rocco Vergallo, Anna Kotsia, Shimpei Nakatani, Λάμπρος Λάκκας, Lambros S. Athanasiou, Katerina Κ. Naka, Dimitrios I. Fotiadis, Charles L. Feldman, Peter H. Stone, Patrick W. Serruys, Ik–Kyung Jang, Lampros K. Michalis (2015). Anatomically correct three-dimensional coronary artery reconstruction using frequency domain optical coherence tomographic and angiographic data: head-to-head comparison with intravascular ultrasound for endothelial shear stress assessment in humans. EuroIntervention, 11(4), pp. 407-415, DOI: 10.4244/eijy14m06_11.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2015

Authors

15

Datasets

0

Total Files

0

Language

English

Journal

EuroIntervention

DOI

10.4244/eijy14m06_11

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access