Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration0 Datasets
0 Files
$0 Value
Get instant academic access to this publication’s datasets.
Join our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessTsinghua University
The lateral confinement provided by concrete cover and stirrups has a significant influence on the bond behavior of reinforcing bars. This paper presents a systematical study on the local bond stress-slip behavior of deformed steel bars based on test results of beam-end specimens and test data reported in the literature. The bond-slip mechanism is discussed in detail and a parameter K representing the confining ability of concrete cover and stirrups is proposed. Through parameter K the bond failure mode can be predicted. With K as the governing parameter, a mathematical model for peak slip is proposed. The proposed model enables a smooth transition from splitting failure to pull-out failure. Furthermore, the nonlinear characteristics of bond stress-slip curves under splitting failure mode, which has not been well recognized in previous studies, are thoroughly discussed. By dividing the post-peak bond stress into two components, a mechanism-based mathematical model for the nonlinear descending branch of bond-slip curves is formulated. Finally, a bond-slip model for deformed steel bars is proposed, which is applicable for both splitting failure and pull-out failure modes. Comparisons with experimental results available in the literature show that the proposed model can provide good predictions for the bond-slip behavior of deformed steel bars with varying confinement levels.
Hongwei Lin, Yuxi Zhao, Joško Ožbolt, Peng Feng, Cheng Jiang, Rolf Eligehausen (2018). Analytical model for the bond stress-slip relationship of deformed bars in normal strength concrete. Construction and Building Materials, 198, pp. 570-586, DOI: 10.1016/j.conbuildmat.2018.11.258.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Construction and Building Materials
DOI
10.1016/j.conbuildmat.2018.11.258
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access