0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper describes and analyzes fracture toughness and crack propagation of selective laser molten (SLM) components made from Ti6Al4V powder particles. The main goal of this research is to gain more insight in the fracture mechanisms of this relatively new material and to improve the static and dynamic behavior of cracked SLM‐Ti components. At first, the SLM process parameters are optimized until the relative material density equals 99.7%. This is close to the relative density of vacuum arc remelted mill annealed standard oxygen titanium which is used as a reference for all experiments. A distinctive difference in phase morphology and texture of the microstructure is noticed between the SLM and the reference titanium. The fine acicular martensite phase of the SLM‐Ti results in more brittle behavior and inferior fracture toughness. On the other hand, the fine grained microstructure leads to a large number of grain boundaries acting as obstacle points for crack propagation. Consequently, crack growth properties do not significantly differ between both. Microstructural analysis of the crack growth and final failure areas on the fractured surfaces is performed to study the failure mechanisms in more detail.
Brecht Van Hooreweder, David Moens, René Boonen, Jean-pierre Kruth, Paul Sas (2011). Analysis of Fracture Toughness and Crack Propagation of Ti6Al4V Produced by Selective Laser Melting. Advanced Engineering Materials, 14(1-2), pp. 92-97, DOI: 10.1002/adem.201100233.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2011
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Advanced Engineering Materials
DOI
10.1002/adem.201100233
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access