0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe trends in miniaturization of electronic devices give rise to the attention of energy harvesting technologies that gathers tiny wattages of power. Here this study demonstrates an ultrathin flexible single electrode triboelectric nanogenerator (S‐TENG) which not only could harvest mechanical energy from human movements and ambient sources, but also could sense instantaneous force without extra energy. The S‐TENG, which features an extremely simple structure, has an average output current of 78 μA, lightening up at least 70 LEDs (light‐emitting diode). Even tapped by bare finger, it exhibits an output current of 1 μA. The detection sensitivity for instantaneous force sensing is about 0.947 μA MPa −1 . Performances of the device are also systematically investigated under various motion types, press force, and triboelectric materials. The S‐TENG has great application prospects in sustainable wearable devices, sustainable medical devices, and smart wireless sensor networks owning to its thinness, light weight, energy harvesting, and sensing capacities.
Shuwen Chen, Xia Cao, Ning Wang, Long Ma, Hui Zhu, M. Willander, Jie Yang, Zhong Lin Wang (2016). An Ultrathin Flexible Single‐Electrode Triboelectric‐Nanogenerator for Mechanical Energy Harvesting and Instantaneous Force Sensing. , 7(1), DOI: https://doi.org/10.1002/aenm.201601255.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
8
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/aenm.201601255
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access