Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. An innovative approach to predict atmospheric rivers: Exploring convolutional autoencoder

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

An innovative approach to predict atmospheric rivers: Exploring convolutional autoencoder

0 Datasets

0 Files

English
2023
Atmospheric Research
Vol 289
DOI: 10.1016/j.atmosres.2023.106754

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Manish Kumar Goyal
Manish Kumar Goyal

Indian Institute Of Technology Indorethe Institution

Verified
Shivam Singh
Manish Kumar Goyal

Abstract

Atmospheric rivers (ARs) are filamentary regions of high moisture content in mid-latitude regions through which most of the poleward moisture is being transported. These ARs carry a huge amount of water in the form of vapor and thus landfalling of these ARs may bring either a beneficial supply of water or may create hazardous flood situations and thus cause damage to life and property. These regions have been statistically characterized as intense integrated water vapor transport (IVT) regions in the troposphere based on various thresholds of magnitude, direction, and geometry. To enhance the knowledge of data-driven methods for modelling nonlinear atmospheric dynamics associated with ARs, a first ever study with data-driven methodology incorporating a Deep Learning architecture, Autoencoder has been proposed. While training the proposed model, the Adam optimizer was used to reduce the mean squared error loss and was optimized using the Rectified Linear Unit (ReLU) and Sigmoid activation functions. The prediction results of the availability of ARs at next frames by the Autoencoder were assessed by popularly used performance evaluation metrics structural similarity index metrics (SSMI), mean squared error (MSE), root mean squared error (RMSE), and peak signal to noise ratio (PSNR). We have got comparatively higher scores (average) of SSIM (0.739) and PSNR (64.422) and lower scores (average) of RMSE (0.155) and MSE (0.0247) for AR prediction from our model which signifies the accuracy of the proposed Autoencoder in capturing AR dynamics. The findings of the study could be useful in giving important insights to incorporate Deep Learning models for forecasting ARs at significant lead time and consequently reducing the risk and increasing the resilience of AR flood prone regions.

How to cite this publication

Shivam Singh, Manish Kumar Goyal (2023). An innovative approach to predict atmospheric rivers: Exploring convolutional autoencoder. Atmospheric Research, 289, pp. 106754-106754, DOI: 10.1016/j.atmosres.2023.106754.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

2

Datasets

0

Total Files

0

Language

English

Journal

Atmospheric Research

DOI

10.1016/j.atmosres.2023.106754

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access