0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe borrowing hydrogen thioetherification of alcohols over heterogeneous catalysts has emerged as an attractive and practical synthetic strategy to prepare thioethers from the perspective of green and sustainable chemistry. Developing efficient catalysts is the key to improve this carbon‐sulfur (C‐S) bond formation process. Herein, a novel catalyst, namely {Mo2.89W0.11S4}n, has been prepared by alloying engineering of its basal planes through an innovative synthetic methodology that makes use of isostructural building entities based on molybdenum and tungsten sulfide molecular complexes with M3S4 (M = Mo, W) cluster cores. Besides excellent activity and reusability, {Mo2.89W0.11S4}n is of broad scope, enabling the conversion of structurally diverse thiols and primary as well as secondary alcohols into thioethers. A set of characterizations, in combination with catalytic results, reveal that the catalytic activity of {Mo2.89W0.11S4}n for this relevant transformation arises from the presence of multiple‐type active centers in the defective basal planes of this alloyed catalyst. More specifically, coordinatively unsaturated sulfurs and metal atoms with Lewis basic and Lewis acid properties, respectively, are proposed to be the active sites involved in the borrowing hydrogen mechanism.
Miriam Rodenes, Darija Oštrić, Santiago Martı́n, Patricia Concepción, Avelino Avelino, Iván Sorribes Terrés (2025). Alloying Engineering of Defective Molybdenum Sulfide Basal Planes for Enhanced Borrowing Hydrogen Activity in the Thioetherification of Alcohols. ChemSusChem, DOI: 10.1002/cssc.202500343.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
ChemSusChem
DOI
10.1002/cssc.202500343
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access