0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSequence analysis of the recently identified class I aldolase of Escherichia coli (dhnA gene product) helped to identify its homologs in Chlamydia trachomatis, Chlamydiophyla pneumoniae and in each of the completely sequenced archaeal genomes. Iterative database searches revealed sequence similarities between the DhnA-family enzymes, deoxyribose phosphate aldolases and bacterial (class II) fructose bisphosphate aldolases and allowed prediction of similar three-dimensional structures (TIM-barrel fold) in all these enzymes. The Schiff base-forming lysyl residues of DhnA and deoxyribose phosphate aldolase are conserved in all members of the DhnA and deoxyribose phosphate aldolase families, indicating that these enzymes share common features with both class I and class II aldolases. The DhnA-family enzymes are predicted to possess an aldolase activity and to play a critical role in sugar biosynthesis in archaea.
Michael Y. Galperin, L. Aravind, Eugene V Koonin (2000). Aldolases of the DhnA family: a possible solution to the problem of pentose and hexose biosynthesis in archaea. , 183(2), DOI: https://doi.org/10.1111/j.1574-6968.2000.tb08968.x.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2000
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1111/j.1574-6968.2000.tb08968.x
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access