RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Adaptive structural reorientation: Developing extraordinary mechanical properties by constrained flexibility in natural materials

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2019

Adaptive structural reorientation: Developing extraordinary mechanical properties by constrained flexibility in natural materials

0 Datasets

0 Files

English
2019
Acta Biomaterialia
Vol 86
DOI: 10.1016/j.actbio.2019.01.010

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Robert O. Ritchie
Robert O. Ritchie

University of California, Berkeley

Verified
Zengqian Liu
Yanyan Zhang
Mingyang Zhang
+4 more

Abstract

Seeking strategies to enhance the overall combinations of mechanical properties is of great significance for engineering materials, but still remains a key challenge because many of these properties are often mutually exclusive. Here we reveal from the perspective of materials science and mechanics that adaptive structural reorientation during deformation, which is an operating mechanism in a wide variety of composite biological materials, functions more than being a form of passive response to allow for flexibility, but offers an effective means to simultaneously enhance rigidity, robustness, mechanical stability and damage tolerance. As such, the conflicts between different mechanical properties can be “defeated” in these composites merely by adjusting their structural orientation. The constitutive relationships are established based on the theoretical analysis to clarify the effects of structural orientation and reorientation on mechanical properties, with some of the findings validated and visualized by computational simulations. Our study is intended to give insight into the ingenious designs in natural materials that underlie their exceptional mechanical efficiency, which may provide inspiration for the development of new man-made materials with enhanced mechanical performance. Statement of Significance It is challenging to attain certain combinations of mechanical properties in man-made materials because many of these properties – for example, strength with toughness and stability with flexibility – are often mutually exclusive. Here we describe an effective solution utilized by natural materials, including wood, bone, fish scales and insect cuticle, to “defeat” such conflicts and elucidate the underlying mechanisms from the perspective of materials science and mechanics. We show that, by adaptation of their structural orientation on loading, composite biological materials are capable of developing enhanced rigidity, strength, mechanical stability and damage tolerance from constrained flexibility during deformation – combinations of attributes that are generally unobtainable in man-made systems. The design principles extracted from these biological materials present an unusual yet potent new approach to guide the development of new synthetic composites with enhanced combinations of mechanical properties.

How to cite this publication

Zengqian Liu, Yanyan Zhang, Mingyang Zhang, Guoqi Tan, Yankun Zhu, Zhefeng Zhang, Robert O. Ritchie (2019). Adaptive structural reorientation: Developing extraordinary mechanical properties by constrained flexibility in natural materials. Acta Biomaterialia, 86, pp. 96-108, DOI: 10.1016/j.actbio.2019.01.010.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

Acta Biomaterialia

DOI

10.1016/j.actbio.2019.01.010

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access