RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Accurate modeling of temporal correlations in rapidly sampled fMRI time series

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2018

Accurate modeling of temporal correlations in rapidly sampled fMRI time series

0 Datasets

0 Files

en
2018
Vol 39 (10)
Vol. 39
DOI: 10.1002/hbm.24218

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Karl Friston
Karl Friston

University College London

Verified
Nadège Corbin
Nick Todd
Karl Friston
+1 more

Abstract

Rapid imaging techniques are increasingly used in functional MRI studies because they allow a greater number of samples to be acquired per unit time, thereby increasing statistical power. However, temporal correlations limit the increase in functional sensitivity and must be accurately accounted for to control the false-positive rate. A common approach to accounting for temporal correlations is to whiten the data prior to estimating fMRI model parameters. Models of white noise plus a first-order autoregressive process have proven sufficient for conventional imaging studies, but more elaborate models are required for rapidly sampled data. Here we show that when the "FAST" model implemented in SPM is used with a well-controlled number of parameters, it can successfully prewhiten 80% of grey matter voxels even with volume repetition times as short as 0.35 s. We further show that the temporal signal-to-noise ratio (tSNR), which has conventionally been used to assess the relative functional sensitivity of competing imaging approaches, can be augmented to account for the temporal correlations in the time series. This amounts to computing the t-score testing for the mean signal. We show in a visual perception task that unlike the tSNR weighted by the number of samples, the t-score measure is directly related to the t-score testing for activation when the temporal correlations are correctly modeled. This score affords a more accurate means of evaluating the functional sensitivity of different data acquisition options.

How to cite this publication

Nadège Corbin, Nick Todd, Karl Friston, Martina F. Callaghan (2018). Accurate modeling of temporal correlations in rapidly sampled fMRI time series. , 39(10), DOI: https://doi.org/10.1002/hbm.24218.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2018

Authors

4

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/hbm.24218

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access