RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Abstract 5416: Positioning the NQO1-bioactivatable drug isobutyl-deoxynyboquinone in diffuse intrinsic pontine glioma (DIPG): an exceptional therapeutic opportunity in pediatric brain tumor

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2020

Abstract 5416: Positioning the NQO1-bioactivatable drug isobutyl-deoxynyboquinone in diffuse intrinsic pontine glioma (DIPG): an exceptional therapeutic opportunity in pediatric brain tumor

0 Datasets

0 Files

en
2020
Vol 80 (16_Supplement)
Vol. 80
DOI: 10.1158/1538-7445.am2020-5416

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Manel Esteller
Manel Esteller

Institution not specified

Verified
Maxime Janin
Vanessa Ortiz Barahona
Pere Llinas Arias
+5 more

Abstract

Abstract Purpose: Diffuse Intrinsic Pontine Glioma (DIPG), is a very aggressive pediatric cancer with poor overall survival and no effective treatment. Despite numerous clinical trials, the overall survival remains at 9 months after diagnosis and only radiotherapy has shown a relative efficacy. Therefore, it is primordial to increase our understanding of the biology of DIPG tumors, as well as finding new healthcare strategies to tackle this pediatric disease. Recently, we discovered that NQO1, a stress-related protein, was overexpressed in 3 out of 6 DIPG patient-derived cell lines, as well as in half of the primary tissues. Interestingly, NQO1 overexpression can be targeted by substrates that induce an excessive oxidative stress into the cells that finally push them to apoptosis, while normal surrounding tissues with basal expression of NQO1 would be keep safe. Experimental procedure: This discovery prompted us to test in in vitro and in vivo assays a promising drug named isobutyl-deoxynyboquinone (IB-DNQ): a NQO1 bioactivatable substrate. We first tested the drug response of the 6 cell lines before testing it on orthotopic xenograft mouse models. We also investigated by which mechanism NQO1 is regulated in DIPG. Finally, we performed experiments in order to decipher by which mechanism NQO1 is regulated in DIPG. Results: We saw that NQO1 overexpressing cells are very sensitive to the drug, compared to the cell lines with normal expression. Moreover, we started to validate the use of IB-DNQ in vivo using a DIPG cell line treated or not (mock) with IB-DNQ and also a NQO1-knockdown model in orthotopic xenograft mice models, confirming that IB-DNQ crosses the blood brain barrier and increases the overall survival. NQO1 increased expression in DIPG is surprisingly not due to a NRF2-mediated transcriptional regulation as we did not observe a correlation between NQO1 transcript abundance and protein expression in DIPG cell lines, indicating that NRF2 pathway could not be implicated, but translational or post-translational regulation could be operating. We performed a polysome profiling of 4 patient-derived cell lines, a protein stability assay and a large scale proteome for the 6 cell lines (pending results). Conclusion: Our preliminary results, including drug efficacy, are very encouraging for the development of this new therapeutic in DIPG. This discovery represents a promising opportunity to tackle this devastating disease and a new hope for the patients and their families. Citation Format: Maxime Henri Janin, Vanessa Ortiz Barahona, Pere Llinas Arias, Carolina De La Torre, Angel Montero Carcaboso, Andres Morales La Madrid, Paul Hergenrother, Manel Esteller. Positioning the NQO1-bioactivatable drug isobutyl-deoxynyboquinone in diffuse intrinsic pontine glioma (DIPG): an exceptional therapeutic opportunity in pediatric brain tumor [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 5416.

How to cite this publication

Maxime Janin, Vanessa Ortiz Barahona, Pere Llinas Arias, Carolina de la Torre, Ángel M. Carcaboso, Andrés Morales La Madrid, Paul J. Hergenrother, Manel Esteller (2020). Abstract 5416: Positioning the NQO1-bioactivatable drug isobutyl-deoxynyboquinone in diffuse intrinsic pontine glioma (DIPG): an exceptional therapeutic opportunity in pediatric brain tumor. , 80(16_Supplement), DOI: https://doi.org/10.1158/1538-7445.am2020-5416.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

8

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1158/1538-7445.am2020-5416

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access