0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract An integrated self‐powered dynamic displacement monitoring system by utilizing a novel triboelectric accelerometer for structural health monitoring is proposed and implemented in this study, which can show the dynamic displacement and transmit the alarming signal by accurately sensing the vibration acceleration. The fabricated triboelectric accelerometer based on the noncontact freestanding triboelectric nanogenerator consists of an outer transparent sleeve tube and an inner cylindrical inertial mass that is suspended by a highly stretchable silicone fiber. One pair of copper film electrodes is deposited by physical vapor deposition on nylon film and adhered on the inner wall of the outer tube, while a fluorinated ethylene propylene film with nanowire structures is adhered on the surface of the inner cylindrical inertial mass. The experimental results show that proposed triboelectric accelerometer can accurately sense the vibration acceleration with a high sensitivity of 0.391 V s 2 m −1 . In particular, the developed accelerometer has superior performance within the low‐frequency range. One of the most striking features is that the commercial accelerometer using piezoelectric material is strongly dominated by high‐order harmonics, which can cause confusion in computer data analysis. In contrast, the triboelectric accelerometer is only dominated by the base resonance mode.
Yu Hua, Xu He, Wenbo Ding, Yongshan Hu, Dongchen Yang, Shan Lu, Changsheng Wu, Haiyang Zou, Ruiyuan Liu, Canhui Lu, Zhong Lin Wang (2017). A Self‐Powered Dynamic Displacement Monitoring System Based on Triboelectric Accelerometer. , 7(19), DOI: https://doi.org/10.1002/aenm.201700565.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
11
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/aenm.201700565
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access