RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. A Self‐Powered Dual Ratchet Angle Sensing System for Digital Twins and Smart Healthcare

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2024

A Self‐Powered Dual Ratchet Angle Sensing System for Digital Twins and Smart Healthcare

0 Datasets

0 Files

en
2024
DOI: 10.1002/adfm.202405104

Get instant academic access to this publication’s datasets.

Create free accountHow it works
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Chao Liu
Rui Gu
Jiahong Yang
+11 more

Abstract

Abstract In the swiftly progressing landscape of wearable electronics and the Internet of Things (IoTs), there is a burgeoning demand for devices that are lightweight, cost‐effective, and self‐powered. In this study, a self‐powered bidirectional knee joint motion monitoring system is introduced, leveraging a dual ratchet sensing (DRS) system fabricated using 3D printing technology. This approach offers substantial economic and portability benefits. The DRS system is engineered to harness the negative work generated from knee joint movements to power commercial electronic devices, obviating the need for additional metabolic energy from the human body. By synergizing the DRS with virtual reality technology, it becomes feasible to monitor knee joint movements in real‐time with remarkable accuracy, presenting a novel avenue for the integration of digital twin technology. Through the amalgamation of convolutional neural network machine learning algorithms with Bayesian optimization techniques, the DRS system can discern up to 97% of knee joint movements, paving the way for innovative applications in smart rehabilitation and healthcare.

How to cite this publication

Chao Liu, Rui Gu, Jiahong Yang, Lin Luo, Mingxia Chen, Yao Xiong, Ziwei Huo, Yang Liu, Keteng Zhang, Jie Gong, Wei Liang, Yanqiang Lei, Zhong Lin Wang, Qijun Sun (2024). A Self‐Powered Dual Ratchet Angle Sensing System for Digital Twins and Smart Healthcare. , DOI: https://doi.org/10.1002/adfm.202405104.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

14

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/adfm.202405104

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration