RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. A Self‐Powered and Flexible Organometallic Halide Perovskite Photodetector with Very High Detectivity

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2018

A Self‐Powered and Flexible Organometallic Halide Perovskite Photodetector with Very High Detectivity

0 Datasets

0 Files

en
2018
Vol 30 (8)
Vol. 30
DOI: 10.1002/adma.201704611

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Siu‐Fung Leung
Kang‐Ting Ho
Po‐Kai Kung
+4 more

Abstract

Flexible and self-powered photodetectors (PDs) are highly desirable for applications in image sensing, smart building, and optical communications. In this paper, a self-powered and flexible PD based on the methylammonium lead iodide (CH3 NH3 PBI3 ) perovskite is demonstrated. Such a self-powered PD can operate even with irregular motion such as human finger tapping, which enables it to work without a bulky external power source. In addition, with high-quality CH3 NH3 PBI3 perovskite thin film fabricated with solvent engineering, the PD exhibits an impressive detectivity of 1.22 × 1013 Jones. In the self-powered voltage detection mode, it achieves a large responsivity of up to 79.4 V mW-1 cm-2 and a voltage response of up to ≈90%. Moreover, as the PD is made of flexible and transparent polymer films, it can operate under bending and functions at 360 ° of illumination. As a result, the self-powered, flexible, 360 ° omnidirectional perovskite PD, featuring high detectivity and responsivity along with real-world sensing capability, suggests a new direction for next-generation optical communications, sensing, and imaging applications.

How to cite this publication

Siu‐Fung Leung, Kang‐Ting Ho, Po‐Kai Kung, Vincent K. S. Hsiao, Husam N. Alshareef, Zhong Lin Wang, Jr‐Hau He (2018). A Self‐Powered and Flexible Organometallic Halide Perovskite Photodetector with Very High Detectivity. , 30(8), DOI: https://doi.org/10.1002/adma.201704611.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2018

Authors

7

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/adma.201704611

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access