0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessConventional structural health monitoring (SHM) evaluates the condition of civil structures by analyzing the data acquired by advanced sensors. The requirement of overinvestment in specialized equipment and labor for implementation prevents the traditional SHM from large-scale usage. On the other hand, computer vision techniques offer cost-effective solutions for SHM thanks to its inherent advantage in data acquirement and processing. More importantly, it has been demonstrated that these emerging solutions can produce reliable condition diagnoses for civil structures using pure image data. In this article, a novel transformer-based neural network is proposed for vision-based structural condition assessment which is formulated to a semantic segmentation problem. The network employs Swin Transformer as the backbone and MaskFormer as the overall architecture to recognize components (sleepers, slabs, columns, etc.) and damage (concrete damage, exposed rebar) of structures. Unlike the commonly used fully convolutional networks, the proposed model tackles semantic segmentation as a mask classification rather than a pixel classification problem. To deal with the lack of training data, an image data augmentation method called Copy-Paste is extended and applied for training data generation, resulting in an increase of around 40% data for component segmentation and 71% data for damage segmentation. Experimental validations on the Tokaido railway viaduct dataset show that the proposed approach is very accurate, achieving 97% and 90% mean Intersection Over Union for component and damage segmentation, outperforming the existing methods by a significant margin. The accurate segmentation results can provide meaningful information for downstream SHM tasks.
Ruhua Wang, Yanda Shao, Qilin Li, Ling Li, Jun Li, Hong Hao (2023). A novel transformer-based semantic segmentation framework for structural condition assessment. , 23(2), DOI: https://doi.org/10.1177/14759217231182303.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1177/14759217231182303
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access