0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessPrimary generalized glucocorticoid resistance is a rare genetic disorder characterized by generalized, partial, target-tissue insensitivity to glucocorticoids. The molecular basis of the condition has been ascribed to inactivating mutations in the human glucocorticoid receptor (hGR) gene.The objective of the study was to present three new cases caused by a novel mutation in the hGR gene and to delineate the molecular mechanisms through which the mutant receptor impairs glucocorticoid signal transduction.The index case (father) and his two daughters presented with increased urinary free cortisol excretion and resistance of the hypothalamic-pituitary-adrenal axis to dexamethasone suppression in the absence of clinical manifestations suggestive of Cushing syndrome. All subjects harbored a novel, heterozygous, point mutation (T→G) at nucleotide position 1724 of the hGR gene, which resulted in substitution of valine by glycine at amino acid 575 of the receptor. Compared with the wild-type receptor, the hGRαV575G demonstrated a significant (33%) reduction in its ability to transactivate the mouse mammary tumor virus promoter in response to dexamethasone, a 50% decrease in its affinity for the ligand, and a 2.5-fold delay in nuclear translocation. Although it did not exert a dominant negative effect on the wild-type receptor and preserved its ability to bind to DNA, hGRαV575G displayed significantly enhanced (∼80%) ability to transrepress the nuclear factor-κΒ signaling pathway. Finally, the mutant receptor hGRαV575G demonstrated impaired interaction with the LXXLL motif of the glucocorticoid receptor-interacting protein 1 coactivator in vitro and in computer-based structural simulation via its defective activation function-2 (AF-2) domain.The natural mutant receptor hGRαV575G causes primary generalized glucocorticoid resistance by affecting multiple steps in the glucocorticoid signaling cascade, including the affinity for the ligand, the time required for nuclear translocation, and the interaction with the glucocorticoid-interacting protein-1 coactivator.
Nicolas C. Nicolaides, Michael L. Roberts, Tomoshige Kino, Geoffrey D. Braatvedt, Darrell E. Hurt, Eleni Katsantoni, Amalia Sertedaki, George Chrousos, Evangelia Charmandari (2014). A Novel Point Mutation of the Human Glucocorticoid Receptor Gene Causes Primary Generalized Glucocorticoid Resistance Through Impaired Interaction With the LXXLL Motif of the p160 Coactivators: Dissociation of the Transactivating and Transreppressive Activities. , 99(5), DOI: https://doi.org/10.1210/jc.2013-3005.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2014
Authors
9
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1210/jc.2013-3005
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access