0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper reports the development of a local variant of Mukherjee's state-specific multireference coupled cluster method based on the pair natural orbital approach (LPNO-MkCC). The current implementation is restricted to single and double excitations. The performance of the LPNO-MkCCSD method was tested on calculations of naphthyne isomers, tetramethyleneethane, and β-carotene molecules. The results show that 99.7-99.8% of correlation energy was recovered with respect to the MkCC method based on canonical orbitals. Moreover, the errors of relative energies between different isomers or along a potential energy curve (with respect to the canonical method) are below 0.4 kcal/mol, safely within the chemical accuracy. The computational efficiency of our implementation of LPNO-MkCCSD in the ORCA program allows calculation of the β-carotene molecule (96 atoms and 1984 basis functions) on a single CPU core.
Ondřej Demel, Jiřı́ Pittner, Frank Neese (2015). A Local Pair Natural Orbital-Based Multireference Mukherjee’s Coupled Cluster Method. Journal of Chemical Theory and Computation, 11(7), pp. 3104-3114, DOI: 10.1021/acs.jctc.5b00334.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2015
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
Journal of Chemical Theory and Computation
DOI
10.1021/acs.jctc.5b00334
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access