0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessCervical cancer is caused in the vast majority of cases by the human papilloma virus (HPV) through sexual contact and requires a specific molecular-based analysis to be detected. As an HPV vaccine is available, the incidence of cervical cancer is up to ten times higher in areas without adequate healthcare resources. In recent years, liquid cytology has been used to overcome these shortcomings and perform mass screening. In addition, classifiers based on convolutional neural networks can be developed to help pathologists diagnose the disease. However, these systems always require the final verification of a pathologist to make a final diagnosis. For this reason, explainable AI techniques are required to highlight the most significant data to the healthcare professional, as it can be used to determine the confidence in the results and the areas of the image used for classification (allowing the professional to point out the areas he/she thinks are most important and cross-check them against those detected by the system in order to create incremental learning systems). In this work, a 4-phase optimization process is used to obtain a custom deep-learning classifier for distinguishing between 4 severity classes of cervical cancer with liquid-cytology images. The final classifier obtains an accuracy over 97% for 4 classes and 100% for 2 classes with execution times under 1 s (including the final report generation). Compared to previous works, the proposed classifier obtains better accuracy results with a lower computational cost.
Javier Civit-Masot, Francisco Luna-Perejón, Luis Muñoz-Saavedra, Manuel Jesus Dominguez Morales, A Balcells (2024). A lightweight xAI approach to cervical cancer classification. , 62(8), DOI: https://doi.org/10.1007/s11517-024-03063-6.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1007/s11517-024-03063-6
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access