0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessTriboelectric nanogenerators (TENGs) are useful for harvesting clean and widely distributed water droplet energy with high efficiency. However, the commonly used polymer films in TENGs for water droplet energy harvesting have the disadvantages of poor breathability, poor skin affinity, and irreparable hydrophobicity, which greatly hinder their wearable uses. Here, we report an all-fabric TENG (F-TENG), which not only has good air permeability and hydrophobic self-repairing properties but also shows effective energy conversion efficiency. The hydrophobic surface composed of SiO2 nanoparticles and poly(vinylidenefluoride-co-hexafluoropropylene)/perfluorodecyltrichlorosilane (PVDF-HFP/FDTS) exhibits a static contact angle of 157° and displays excellent acid and alkali resistance. Because of its low glass transition temperature, PVDF-HFP can facilitate the movement of FDTS molecules to the surface layer under heating conditions, realizing hydrophobic self-repairing performance. Furthermore, with the optimized compositions and structure, the water droplet F-TENG shows 7-fold enhancement of output voltage compared with the conventional single-electrode mode TENG, and a total energy conversion efficiency of 2.9% is achieved. Therefore, the proposed F-TENG can be used in multifunctional wearable devices for raindrop energy harvesting.
Cuiying Ye, Di Liu, Peng Xiao, Yang Jiang, Renwei Cheng, Chuan Ning, Feifan Sheng, Yihan Zhang, Kai Dong, Zhong Lin Wang (2021). A Hydrophobic Self-Repairing Power Textile for Effective Water Droplet Energy Harvesting. , 15(11), DOI: https://doi.org/10.1021/acsnano.1c06985.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
10
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acsnano.1c06985
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access