Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. A dissolution model of alite coupling surface topography and ions transport under different hydrodynamics conditions at microscale

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2021

A dissolution model of alite coupling surface topography and ions transport under different hydrodynamics conditions at microscale

0 Datasets

0 Files

en
2021
Vol 142
Vol. 142
DOI: 10.1016/j.cemconres.2021.106377

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Ye Guang
Ye Guang

Institution not specified

Verified
Jiayi Chen
Pablo Martin
Zhiyuan Xu
+3 more

Abstract

Portland cement is the most produced material in the world. The hydration process of cement consists of a group of complex chemical reactions. In order to investigate the mechanism of cement hydration, it is vital to study the hydration of each phase separately. An integrated model is proposed in this paper to simulate the dissolution of alite under different hydrodynamic conditions at microscale, coupling Kinetic Monte Carlo model (KMC), Lattice Boltzmann method (LBM) and diffusion boundary layer (DBL). The dissolution of alite is initialised with KMC. Two Multiple-relaxation-time (MRT) LB models are used to simulate the fluid flow and transport of ions, respectively. For solid-liquid interface, DBL is adapted to calculate the concentration gradient and dissolution flux. The model is validated with experiment from literature. The simulation results show good agreements with the results published in the literature.

How to cite this publication

Jiayi Chen, Pablo Martin, Zhiyuan Xu, Hegoi Manzano, Jorge S. Dolado, Ye Guang (2021). A dissolution model of alite coupling surface topography and ions transport under different hydrodynamics conditions at microscale. , 142, DOI: https://doi.org/10.1016/j.cemconres.2021.106377.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1016/j.cemconres.2021.106377

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access