0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessPortland cement is the most produced material in the world. The hydration process of cement consists of a group of complex chemical reactions. In order to investigate the mechanism of cement hydration, it is vital to study the hydration of each phase separately. An integrated model is proposed in this paper to simulate the dissolution of alite under different hydrodynamic conditions at microscale, coupling Kinetic Monte Carlo model (KMC), Lattice Boltzmann method (LBM) and diffusion boundary layer (DBL). The dissolution of alite is initialised with KMC. Two Multiple-relaxation-time (MRT) LB models are used to simulate the fluid flow and transport of ions, respectively. For solid-liquid interface, DBL is adapted to calculate the concentration gradient and dissolution flux. The model is validated with experiment from literature. The simulation results show good agreements with the results published in the literature.
Jiayi Chen, Pablo Martin, Zhiyuan Xu, Hegoi Manzano, Jorge S. Dolado, Ye Guang (2021). A dissolution model of alite coupling surface topography and ions transport under different hydrodynamics conditions at microscale. , 142, DOI: https://doi.org/10.1016/j.cemconres.2021.106377.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1016/j.cemconres.2021.106377
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access