Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. A Deformation-Based Peridynamic Model: Theory and Application

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2025

A Deformation-Based Peridynamic Model: Theory and Application

0 Datasets

0 Files

en
2025
Vol 15 (11)
Vol. 15
DOI: 10.3390/buildings15111931

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Diyuan Li
Diyuan Li

Institution not specified

Verified
Binod Adhikari
Diyuan Li
Zhenyu Han

Abstract

This study presents a peridynamic model formulated using the micromodulus function and bond deformation. The model is derived by establishing energy equivalence between a modified virtual internal bond (VIB) and a peridynamic bond. To address surface effects in peridynamics, a stress-based correction method utilizing nodal stress is introduced, enhancing the model’s numerical accuracy. The model was implemented using an in-house Cython code and validated through the following numerical examples: a plate under traction, a plate with a hole under displacement boundary conditions, a uniaxial compression test on granite with a deformation-based mixed-mode bond failure criterion, and a comparison with an existing strain-based peridynamic model. For the plate under traction, the deformation-based method performed similarly to the strain-based model in the loading direction and better in the unloaded direction. The stress concentration obtained from the proposed model (240 MPa) near the hole in the rectangular plate simulation differed from FEM (252 MPa) by 4.7%. The granite test predicted a UCS of 111.88 MPa and a Young’s modulus of 20.67 GPa, with errors of 0.1% and 1.57%, respectively, compared to the experimental data.

How to cite this publication

Binod Adhikari, Diyuan Li, Zhenyu Han (2025). A Deformation-Based Peridynamic Model: Theory and Application. , 15(11), DOI: https://doi.org/10.3390/buildings15111931.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2025

Authors

3

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.3390/buildings15111931

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access