0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA restoring-force model is a versatile mathematical model that can describe the relationship between the restoring force and the deformation obtained from a large number of experiments. Over the past few decades, a large body of work on the development of restoring-force models has been reported in the literature. Under high intensity cyclic loadings or seismic excitations, reinforced concrete (RC) structures undergo a wide range of hysteretic deteriorations such as strength, stiffness and pinching degradations. These characteristic behaviors can be described by the multi-parameter Bouc-Wen-Baber-Noori (BWBN) model, which offers a wide range of applicability. This model has been applied for the response prediction and modeling restoring-force behavior in structural and mechanical engineering systems, by adjusting the distribution range of this model’s parameters. However, a major difficulty in utilizing the multi-parameter BWBN model is the parameters’ identification. In this paper, a deep neural network model is used to estimate the hysteresis parameters of the BWBN model. This model is one of the most versatile and widely used general hysteresis models that can describe the hysteretic behavior of RC columns. The experimental data of the RC columns used in this paper are collected from the database of the Pacific Earthquake Engineering Research Center (PEER). Firstly, the hysteretic loop obtained from a physical experiment is described by the BWBN model, and the parameters of the BWBN model are identified via a genetic optimization algorithm. Then a neural network is established by a backpropagation (BP) algorithm for associating the identified BWBN model parameters with physical parameters of the RC column. Finally, the regression analysis of the identified parameters is carried out to obtain the regression characteristics of the RC columns. The trained neural network model can directly identify the parameters of BWBN model based on the physical parameters of RC columns, and is effective and computationally efficient for multi-parameter BWBN model identification. The proposed approach overcomes the difficult problem of identifying the parameters of BWBN model and provides a promising approach for a wider application of this multi-parameter hysteresis model.
Zele Li, Mohammad Noori, Chunfeng Wan, Bo Yu, Bochen Wang, Wael A. Altabey (2022). A Deep Learning-Based Approach for the Identification of a Multi-Parameter BWBN Model. Applied Sciences, 12(19), pp. 9440-9440, DOI: 10.3390/app12199440.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Applied Sciences
DOI
10.3390/app12199440
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access