0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn this paper, different macroscopic electrochemical techniques are applied to study the corrosion inhibitor efficiency, protection mechanism and stability of a calcium aluminum polyphosphate silicate hydrate inhibitor on hot-dip galvanized steel in the time-domain. Potentiodynamic polarization (PP) measurements are applied to study the anodic and cathodic mechanistic behavior as well as inhibitor efficiencies at discrete and single times of exposure. Open circuit potential (OCP) with superimposed linear polarization resistance (LPR) measurements are applied as a faster, non-invasive alternative to PP, characterizing the overall performance of the system in terms of the polarization resistance. Electrochemical impedance spectroscopy (EIS) measurements are applied to detail both the overall performance of the system as well as the corrosion inhibition mechanism related to the electrochemical system's physicochemical representation over time. Electrochemical noise (EN) measurement are used to evaluate the inhibition efficiency as a function of exposure time, represented by the electrochemical noise resistance. Odd random phase electrochemical impedance spectroscopy (ORP-EIS) is selected as the electrochemical tool to study the system's instability, by evaluation of the non-linearities and non-stationarities over time. The non-stationarities present in the inhibitor-containing electrochemical system are shown to cause the overall instability of the system and should be taken into account when interpreting results from the different techniques over time.
Mats Meeusen, L. Zardet, A.M. Homborg, Maria Lekka, F. Andreatta, L. Fedrizzi, B. Boelen, Herman Terryn, J.M.C. Mol (2019). A Complementary Electrochemical Approach for Time-Resolved Evaluation of Corrosion Inhibitor Performance. Journal of The Electrochemical Society, 166(11), pp. C3220-C3232, DOI: 10.1149/2.0271911jes.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
9
Datasets
0
Total Files
0
Language
English
Journal
Journal of The Electrochemical Society
DOI
10.1149/2.0271911jes
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access