0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe recent discovery of non-saturating giant positive magnetoresistance has aroused much interest in Td-WTe(2). We have investigated structural, electronic and vibrational properties of bulk and few-layer Td-WTe(2) experimentally and theoretically. Spin-orbit coupling is found to govern the semi-metallic character of Td-WTe(2) and its structural link with the metallic 1 T form provides an understanding of its structural stability. There is a metal-to-insulator switch-over in the electrical conductivity and a change in the sign of the Seebeck coefficient around 373 K. Lattice vibrations of Td-WTe(2) have been analyzed using first-principles calculations. Out of the 33 possible zone-center Raman active modes, five distinct Raman bands are observed around 112, 118, 134, 165 and 212 cm(-1) in bulk Td-WTe(2). Based on symmetry analysis and calculated Raman tensors, we assign the intense bands at 165 cm(-1) and 212 cm(-1) to the A'(1)and A''(1) modes, respectively. Most of the Raman bands stiffen with decreasing thickness, and the ratio of the integrated intensities of the A''(1) to A'(1) bands decreases in the few-layer sample, while all the bands soften in both the bulk and few-layer samples with increasing temperature.
Manoj K. Jana, Anjali Singh, Dattatray J. Late, Catherine R. Rajamathi, Kanishka Biswas, Claudia Felser, Umesh V. Waghmare, Cnr Rao (2015). A combined experimental and theoretical study of the structural, electronic and vibrational properties of bulk and few-layer Td-WTe<sub>2</sub>. Journal of Physics Condensed Matter, 27(28), pp. 285401-285401, DOI: 10.1088/0953-8984/27/28/285401.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2015
Authors
8
Datasets
0
Total Files
0
Language
English
Journal
Journal of Physics Condensed Matter
DOI
10.1088/0953-8984/27/28/285401
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access