RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. A Battery‐Like Self‐Charge Universal Module for Motional Energy Harvest

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2019

A Battery‐Like Self‐Charge Universal Module for Motional Energy Harvest

0 Datasets

0 Files

en
2019
Vol 9 (36)
Vol. 9
DOI: 10.1002/aenm.201901875

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Puchuan Tan
Qiang Zheng
Yang Zou
+9 more

Abstract

Abstract Wearable and portable electronics have brought great convenience. These battery‐powered commercial devices have a limited lifetime and require recharging, which makes more extensive applications challenging. Here, a battery‐like self‐charge universal module (SUM) is developed, which is able to efficiently convert mechanical energy into electrical energy and store it in one device. An integrated SUM consists of a power management unit and an energy harvesting unit. Compared to other mechanical energy harvesting devices, SUM is more ingenious, efficient and can be universally used as a battery. Under low frequency (5 Hz), a SUM can deliver an excellent normalized output power of 2 mW g −1 . After carrying several SUMs and jogging for 10 min, a commercial global positioning system module is powered and works continuously for 0.5 h. SUMs can be easily assembled into different packages for powering various commercial electronics, demonstrating the great application prospects of SUM as a sustainable battery‐like device for wearable and portable electronics.

How to cite this publication

Puchuan Tan, Qiang Zheng, Yang Zou, Bojing Shi, Dongjie Jiang, Xuecheng Qu, Han Ouyang, Chaochao Zhao, Yu Cao, Yubo Fan, Zhong Lin Wang, Zhou Li (2019). A Battery‐Like Self‐Charge Universal Module for Motional Energy Harvest. , 9(36), DOI: https://doi.org/10.1002/aenm.201901875.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

12

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/aenm.201901875

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access