RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. 3D displacement measurement using a single-camera and mesh deformation neural network

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2024

3D displacement measurement using a single-camera and mesh deformation neural network

0 Datasets

0 Files

en
2024
Vol 318
Vol. 318
DOI: 10.1016/j.engstruct.2024.118767

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Jun Li
Jun Li

Institution not specified

Verified
Yanda Shao
Ling Li
Jun Li
+3 more

Abstract

Computer vision-based methods for civil structure's vibration displacement measurement have emerged as useful tools in the recent years. These methods offer several benefits including non-contact measurements, cost-effectiveness, and the ability to capture full-field displacement. Yet, there remain certain challenges. Measuring vibration displacement in 3D typically requires multiple cameras, adding complexity to camera configurations. Moreover, existing methods relied heavily on physical markers or natural key points. Placing physical markers on structures is often impractical, and natural key points are difficult to detect on structures with few distinct features or during rapid movements. Contrary to previous approaches, this paper presents a novel technique that uses a monocular camera for 3D displacement measurements. This technique obviates the need for physical markers or the reliance on natural key points, representing a significant advancement. Central to the method is a deep neural network designed to predict 3D mesh deformation directly from a single image input, combined with an initial 3D cube mesh input. A synthetic 3D dataset is generated to train the neural network. In the testing phase for real structures, advanced video segmentation method is employed to remove the background in order to enhance the prediction accuracy. The practical efficacy of this methodology is validated in a laboratory through a series of experimental tests on beam structures, demonstrating reliable results and application potentials.

How to cite this publication

Yanda Shao, Ling Li, Jun Li, Qilin Li, Senjian An, Hong Hao (2024). 3D displacement measurement using a single-camera and mesh deformation neural network. , 318, DOI: https://doi.org/10.1016/j.engstruct.2024.118767.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1016/j.engstruct.2024.118767

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access