0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMillimeter Wave (mmWave) systems are considered as one of the key technologies in future wireless systems due to the abundant spectrum resources in mmWave band. With the aim of achieving the capacity requirements in vehicular networks, large antenna arrays can be deployed at both the road side units (RSUs) side and the vehicles side. However, dynamic blockage caused by mobile obstacles in mmWave bands may hinder the system reliability. In this work, we study the temporal effects of dynamic blockage in vehicular networks and propose a deep reinforcement learning framework to overcome dynamic blockage. By dynamically adjusting blockage detection parameters and making intelligent handover decisions according to the observed states, system reliability can be significantly improved. Simulation results based on ray-tracing channel data show that the proposed scheme reduces the violation probability by 28.9% over conventional schemes.
Sheng Chen, Trung Kien Vu, Sheng Zhou, Zhisheng Niu, Mehdi Bennis, Matti Latva-aho (2020). 1 A Deep Reinforcement Learning Framework to Combat Dynamic Blockage in mmWave V2X Networks. , 16, pp. 1-5, DOI: 10.1109/6gsummit49458.2020.9083744.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
6
Datasets
0
Total Files
0
Language
English
DOI
10.1109/6gsummit49458.2020.9083744
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access