RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Zirconium-based conversion film formation on zinc, aluminium and magnesium oxides and their interactions with functionalized molecules

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2017

Zirconium-based conversion film formation on zinc, aluminium and magnesium oxides and their interactions with functionalized molecules

0 Datasets

0 Files

English
2017
Applied Surface Science
Vol 423
DOI: 10.1016/j.apsusc.2017.06.174

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Herman Terryn
Herman Terryn

Institution not specified

Verified
Laura-Lynn Fockaert
Peyman Taheri
Shoshan T. Abrahami
+3 more

Abstract

Zirconium-based conversion treatment of zinc, aluminium and magnesium oxides have been studied in-situ using ATR-FTIR in a Kretschmann geometry. This set-up was coupled to an electrochemical cell, which allowed to obtain chemical and electrochemical information simultaneously as a function of conversion time. This elucidated the strong relation between physico-chemical surface properties and zirconium-based conversion kinetics. Whereas the surface hydroxyl density of zinc and aluminium increased during conversion, magnesium (hydr)oxide was shown to dissolve in the acid solution. Due to this dissolution, strong surface alkalization can be expected, explaining the rapid conversion kinetics. AES depth profiling was used to determine the final oxide thickness and elemental composition. This confirmed that magnesium is most active and forms a zirconium oxide layer approximately 10 times thicker than zinc. On the other hand, the presence of zirconium oxide on aluminium is very low and can be considered as not fully covering the metal oxide. Additionally, the converted oxide chemistry was related to the bonding mechanisms of amide functionalized molecules using ATR-FTIR and XPS. It was shown that inclusion of zirconium altered the acid-base properties, increasing the substrate proton donating capabilities in case of magnesium oxide and increasing hydrogen bonding and Bronsted interactions due to increased surface hydroxide fractions on zinc and aluminium substrates.

How to cite this publication

Laura-Lynn Fockaert, Peyman Taheri, Shoshan T. Abrahami, B. Boelen, Herman Terryn, J.M.C. Mol (2017). Zirconium-based conversion film formation on zinc, aluminium and magnesium oxides and their interactions with functionalized molecules. Applied Surface Science, 423, pp. 817-828, DOI: 10.1016/j.apsusc.2017.06.174.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2017

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Applied Surface Science

DOI

10.1016/j.apsusc.2017.06.174

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access