0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessTwo types of dedicated Tristructural isotropic (TRISO) nuclear fuel particles, PyC-1 (Kernel/Buffer/PyC) and PyC-2 (Kernel/Buffer/SiC/PyC) from PYCASSO (Pyrocarbon irradiation for creep and swelling/shrinkage of objects) neutron irradiation experiments, were studied. For unirradiated particles, crushing experiments using a unique hot cell, combined with in situ X-ray computed micro-tomography (XCT) imaging, were conducted at room temperature (RT) and at 1000 °C. Although the SiC layer on the particles is presumed to provide 'mechanical stability' to the TRISO particles, results showed a remarkable reduction (~45%) in the crushing strength of the PyC-2 particles at 1000 °C compared to RT. The fracture patterns of the two types of particles, both at the contact zone and on subsequent propagation, differ significantly at RT and 1000 °C. Further, irradiated particles (irradiation temperature: 1000 ± 20 °C; irradiation doses: 1.08–1.23 dpa and 1.49–1.51 dpa) were imaged by XCT; 250 PyC-1 particles and 223 PyC-2 particles were studied in total and the change in radius/layer thickness in each type was examined. It was found that the buffer densification was lower in PyC-1 particles compared to PyC-2 particles, and the PyC layer shrank in the PyC-I particles, whereas it expanded in PyC-2. Results are discussed in terms of how the residual stresses can impact the high-temperature and post-irradiation behavior of these particles.
Dong Liu, S. Knol, Jon Ell, Harold Barnard, Mark Davies, J.A. Vreeling, Robert O. Ritchie (2019). X-ray tomography study on the crushing strength and irradiation behaviour of dedicated tristructural isotropic nuclear fuel particles at 1000 °C. Materials & Design, 187, pp. 108382-108382, DOI: 10.1016/j.matdes.2019.108382.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
Materials & Design
DOI
10.1016/j.matdes.2019.108382
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access