RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Why are there so many independent origins of artemisinin resistance in malaria parasites?

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
English
2016

Why are there so many independent origins of artemisinin resistance in malaria parasites?

0 Datasets

0 Files

English
2016
bioRxiv (Cold Spring Harbor Laboratory)
DOI: 10.1101/056291

Get instant academic access to this publication’s datasets.

Create free accountHow it works
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Sir Nicholas White
Sir Nicholas White

University Of Cambridge

Verified
Timothy J. C. Anderson
Shalini Nair
Marina McDew‐White
+8 more

Abstract

Summary Multiple alleles at the kelch13 locus conferring artemisinin resistance (ART-R) are currently spreading through malaria parasite populations in Southeast Asia, providing a unique opportunity to directly observe an ongoing soft selective sweep, to investigate why resistance alleles have evolved multiple times and to determine fundamental population genetic parameters for Plasmodium. We sequenced the kelch13 gene (n=1,876), genotyped 75 flanking SNPs, and measured clearance rate (n=3,552) in parasite infections from Western Thailand (2001-2014). We describe 32 independent coding mutations: these included common mutations outside the kelch13 propeller region associated with significant reductions in clearance rate. Mutations were first observed in 2003 and rose to 90% by 2014, consistent with a selection coefficient of ~0.079. There was no change in diversity in flanking markers, but resistance allele diversity rose until 2012 and then dropped as one allele (C580Y) spread to high frequency. The rapid spread of C580Y suggests that the genomic signature may be considerably harder in the near future, and that retrospective studies may underestimate the complexity of selective sweeps. The frequency with which adaptive alleles arise is determined by the rate of mutation to generate beneficial alleles and the population size. Two factors drive this soft sweep: (1) multiple amino-acid mutations in kelch13 can confer resistance providing a large mutational target – we estimate the target size is between 87 and 163bp. (2) The population mutation parameter ( Θ =2 N e μ ) can be estimated from the frequency distribution of resistant alleles and is ~ 5.69, suggesting that short term effective population size is between 88 thousand and 1.2 million. This is 52 to 705-fold greater than N e estimates based on fluctuation in allele frequencies, suggesting that we have previously underestimated the capacity for adaptive evolution in Plasmodium. Our central conclusions are that retrospective studies may underestimate the complexity of selective events, ART-R evolution is not limited by availability of mutations, and the N e relevant for adaptation for malaria is considerably higher than previously estimated. Significance Statement Previous work has identified surprisingly few origins of resistance to antimalarial drugs such as chloroquine and pyrimethamine. This has lead to optimism about prospects for minimizing resistance evolution through combination therapy. We studied a longitudinal collection of malaria parasites from the Thai-Myanmar border (2001–14) to examine an ongoing selective event in which ≥32 independent alleles associated with ART-R evolved. Three factors appear to explain the large number of origins observed: the large number of amino acid changes that result in resistance (i.e. large mutational “target size”), the large estimated effective population size ( N e ), and the fact that we were able to document this selective event in real time, rather than retrospectively.

How to cite this publication

Timothy J. C. Anderson, Shalini Nair, Marina McDew‐White, Ian H. Cheeseman, Standwell C. Nkhoma, Fatma Bilgic, Rose McGready, Elizabeth A. Ashley, Aung Pyae Phyo, Sir Nicholas White, François Nosten (2016). Why are there so many independent origins of artemisinin resistance in malaria parasites?. bioRxiv (Cold Spring Harbor Laboratory), DOI: 10.1101/056291.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2016

Authors

11

Datasets

0

Total Files

0

Language

English

Journal

bioRxiv (Cold Spring Harbor Laboratory)

DOI

10.1101/056291

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration