RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. What controls the availability of organic and inorganic P sources in top- and subsoils? A 33P isotopic labeling study with root exudate addition

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

What controls the availability of organic and inorganic P sources in top- and subsoils? A 33P isotopic labeling study with root exudate addition

0 Datasets

0 Files

English
2023
Soil Biology and Biochemistry
Vol 185
DOI: 10.1016/j.soilbio.2023.109129

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Michaela Dippold
Michaela Dippold

Institution not specified

Verified
Juanjuan Ai
Callum C. Banfield
Guodong Shao
+7 more

Abstract

Phosphorus (P) is a major limiting nutrient for plant growth implying an often-intensive competition between microorganisms and plants in the rhizosphere. Increasing the P availability in subsoils may help to mitigate potential future P fertilizer shortages and to overcome P limitations due to droughts, which mainly affect topsoils. Root exudates provide easily available carbon and energy sources for microorganisms to mobilize soil nutrients. Nonetheless, details regarding the distinct processes underlying P mobilization from various P sources (free vs. sorbed PO4 3−; low molecular vs. complex organic P, e.g. ATP vs. plant litter P) as affected by root exudates are poorly understood, especially in subsoils. This study aimed to identify the controlling factors and microbial processes regulating the availability of organic and inorganic P in top- and subsoils by 33P isotopic labeling. The focus was on the potential key role of root exudates in P mobilization. We found that microbial communities in top- and subsoils used high- and low-available mineral P to a similar extent, but that the subsoil communities were much more efficient in mobilizing and incorporating complex litter-derived organic P. This capability of subsoil communities was even enhanced when root exudates were present. Microbial activity and nutrient-mobilizing mechanisms (e.g., P-related enzymes) clearly increased by root exudate addition, an effect that was generally higher in sub-than in topsoils. We conclude that subsoil communities are well capable of mobilizing and using complex organic P sources, especially if root exudates accelerate overall activity and P cycling. Thus, high root exudation is highly relevant for crops, which depend on subsoil nutrients and litter-derived P. Accordingly, detritusphere P, e.g. in subsoil root channels, is likely to be plant-available because of exudate-induced microbial P (re-)cycling processes.

How to cite this publication

Juanjuan Ai, Callum C. Banfield, Guodong Shao, Kazem Zamanian, Tobias Stürzebecher, Lingling Shi, Lichao Fan, Xia Liu, Sandra Spielvogel, Michaela Dippold (2023). What controls the availability of organic and inorganic P sources in top- and subsoils? A 33P isotopic labeling study with root exudate addition. Soil Biology and Biochemistry, 185, pp. 109129-109129, DOI: 10.1016/j.soilbio.2023.109129.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

10

Datasets

0

Total Files

0

Language

English

Journal

Soil Biology and Biochemistry

DOI

10.1016/j.soilbio.2023.109129

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access