0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessBackground The symptoms for Major Depression (MD) defined in the DSM-5 differ markedly from symptoms assessed in common rating scales, and the empirical question about core depression symptoms is unresolved. Here we conceptualize depression as a complex dynamic system of interacting symptoms to examine what symptoms are most central to driving depressive processes. Methods We constructed a network of 28 depression symptoms assessed via the Inventory of Depressive Symptomatology (IDS-30) in 3,463 depressed outpatients from the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study. We estimated the centrality of all IDS-30 symptoms, and compared the centrality of DSM and non-DSM symptoms; centrality reflects the connectedness of each symptom with all other symptoms. Results A network with 28 intertwined symptoms emerged, and symptoms differed substantially in their centrality values. Both DSM symptoms (e.g., sad mood) and non-DSM symptoms (e.g., anxiety) were among the most central symptoms, and DSM criteria were not more central than non-DSM symptoms. Limitations Many subjects enrolled in STAR*D reported comorbid medical and psychiatric conditions which may have affected symptom presentation. Conclusion The network perspective neither supports the standard psychometric notion that depression symptoms are equivalent indicators of MD, nor the common assumption that DSM symptoms of depression are of higher clinical relevance than non-DSM depression symptoms. The findings suggest the value of research focusing on especially central symptoms to increase the accuracy of predicting outcomes such as the course of illness, probability of relapse, and treatment response.
Eiko I. Fried, Sacha Epskamp, Randolph M. Nesse, Francis Tuerlinckx, Denny Borsboom (2015). What are 'good' depression symptoms? Comparing the centrality of DSM and non-DSM symptoms of depression in a network analysis. Journal of Affective Disorders, 189, pp. 314-320, DOI: 10.1016/j.jad.2015.09.005.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2015
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Journal of Affective Disorders
DOI
10.1016/j.jad.2015.09.005
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access