RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Water aging and the quality of organic carbon sources drive niche partitioning of the active bathypelagic prokaryotic microbiome

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2024

Water aging and the quality of organic carbon sources drive niche partitioning of the active bathypelagic prokaryotic microbiome

0 Datasets

0 Files

en
2024
Vol 69 (3)
Vol. 69
DOI: 10.1002/lno.12505

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Carlos M. Duarte
Carlos M. Duarte

King Abdullah University of Science and Technology

Verified
Marta Sebastián
Pablo Sánchez
Guillem Salazar
+7 more

Abstract

Abstract Due to the scarcity of organic matter (OM) sources in the bathypelagic (1000–4000 m depth), prokaryotic metabolism is believed to be concentrated on particles originating from the surface. However, the structure of active bathypelagic prokaryotic communities and how it changes across environmental gradients remains unexplored. Using a combination of 16S rRNA gene and transcripts sequencing, metagenomics, and substrate uptake potential measurements, here we aimed to explore how water masses aging and the quality of OM influence the structure of the active microbiome, and the potential implications for community function. We found that the relative contribution of taxa with a free‐living lifestyle to the active microbiome increased in older water masses that were enriched in recalcitrant OM, suggesting that these prokaryotes may also play a substantial role in the bathypelagic metabolism of vast areas of the ocean. In comparison to particle‐associated prokaryotes, free‐living prokaryotes exhibited lower potential metabolic rates, and harbored a limited number of two‐component sensory systems, suggesting they have less ability to sense and respond to environmental cues. In contrast, particle‐associated prokaryotes carried genes for particle colonization and carbohydrate utilization that were absent in prokaryotes with a free‐living lifestyle. Consistently, we observed that prokaryotic communities inhabiting older waters displayed reduced abilities to colonize particles, and higher capabilities to use complex carbon sources, compared to communities in waters with a higher proportion of labile OM. Our results provide evidence of regionalization of the bathypelagic active prokaryotic microbiome, unveiling a niche partitioning based on the quality of OM.

How to cite this publication

Marta Sebastián, Pablo Sánchez, Guillem Salazar, Xosé Antón Álvarez‐Salgado, Isabel Reche, Xosé Anxelu G. Morán, M. Montserrat Sala, Carlos M. Duarte, Silvia G. Acinas, Josep M. Gasol (2024). Water aging and the quality of organic carbon sources drive niche partitioning of the active bathypelagic prokaryotic microbiome. , 69(3), DOI: https://doi.org/10.1002/lno.12505.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

10

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/lno.12505

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access