0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe long-term stability of soil inorganic carbon (SIC) and its minimum contribution towards global C cycle has been challenged, as recent studies have showed rapid decreases in SIC stocks in intensive agricultural systems. However, the extent of SIC losses and its driving factors remains unclear. Here, we compared changes in SIC density (SICD) in Chinese croplands between the 1980s and 2010s. The SIC contents in 1980s were obtained from second national soil survey (n = 949) and published studies (n = 47). The SIC contents in 2010s were based on resampling of soil profiles from the same locations during 2019 and 2020 (n = 30), as well as data from published studies and national soil survey (n = 903). We found that Chinese croplands have lost 27–38% of SICD from the 0–40 cm soil layer and that the soil pH has decreased by 0.53 units over the past 30 years. These SIC losses increased with the ratio of precipitation (P) to potential evapotranspiration (PET) and most notably with nitrogen (N) fertilization. The SICD decreased greatly in humid and semiarid regions, and these losses were enhanced by high N fertilization rates; however, the SICD increased in very arid regions. This analysis demonstrates that the water balance and N fertilization are major drivers leading to dramatic losses of SICD in croplands and, consequently, to decreases in soil fertility and functions.
Jingjing Tao, Sajjad Raza, Mengzhen Zhao, Jiaojiao Cui, Peizhou Wang, Yueyu Sui, Kazem Zamanian, Yakov Kuzyakov, Minggang Xu, Zhujun Chen, Jianbin Zhou (2022). Vulnerability and driving factors of soil inorganic carbon stocks in Chinese croplands. The Science of The Total Environment, 825, pp. 154087-154087, DOI: 10.1016/j.scitotenv.2022.154087.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
11
Datasets
0
Total Files
0
Language
English
Journal
The Science of The Total Environment
DOI
10.1016/j.scitotenv.2022.154087
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access