0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn recent years, a whole-brain unbiased objective technique, known as voxel-based morphometry (VBM), has been developed to characterise brain differences in vivo using structural magnetic resonance images. The present review provides a brief description of VBM and then focuses on exemplar applications in healthy and diseased subjects. The procedure involves normalising high-resolution structural magnetic resonance images to a standard template in stereotactic space. Normalised images are then segmented into gray and white matter and smoothed using an isotropic Gaussian kernel. Finally, a series of voxel-wise comparisons of gray and white matter in different groups of subjects are performed, using Random Field theory to correct for multiple comparisons. VBM has been useful in characterizing subtle changes in brain structure in a variety of diseases associated with neurological and psychiatric dysfunction. These include schizophrenia, developmental and congenital disorders, temporal lobe epilepsy and even cluster headache. In addition, VBM has been successful in identifying gross structural abnormalities, such as those observed in herpes simplex encephalitis, multiple sclerosis and Alzheimers disease. Studies of normal subjects, on the other hand, have focussed on the impact of learning and practice on brain structure. These studies have led to the finding that environmental demands may be associated with changes in gray and white matter. For instance, it has been reported that the structure of the brain alters when human beings learn to navigate, read music, speak a second language and even perform a complex motor task such as juggling. We conclude the present review by discussing the potential limitations of the technique. Keywords: voxel-based morphometry, magnetic resonance imaging, statistical parametric mapping, gray matter, white matter
Andrea Mechelli, Cathy J. Price, Karl Friston, John Ashburner (2005). Voxel-Based Morphometry of the Human Brain: Methods and Applications. Current Medical Imaging Formerly Current Medical Imaging Reviews, 1(2), pp. 105-113, DOI: 10.2174/1573405054038726.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2005
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Current Medical Imaging Formerly Current Medical Imaging Reviews
DOI
10.2174/1573405054038726
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access