RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Ventilation performance of a naturally ventilated double skin façade with low-e glazing

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2021

Ventilation performance of a naturally ventilated double skin façade with low-e glazing

0 Datasets

0 Files

English
2021
Energy
Vol 229
DOI: 10.1016/j.energy.2021.120706

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Long Shi
Long Shi

University Of Science And Technology Of China

Verified
Yao Tao
Haihua Zhang
Dongmei Huang
+3 more

Abstract

Natural ventilation through double-skin façades shows promising effects in building energy saving, but the possible potential and behind mechanisms with low-e glazing remain to be explored. To fill the research gap, this study compared the normal clear glazing and the low-e glazing in the use of a naturally ventilated double-skin façade (NVDSF), together under impacts of spectral optical properties, environmental factors and configurations. Results reveal a significant enhancement - 13% more ventilation rate by replacing clear glass with low-e glass. However, the ventilation performance is sensitive to low-e glazing’s spectral optical properties, where a higher portion of absorptivity is more advantageous for natural ventilation. Besides, environmental factors - solar incident angles and solar intensities - show predominant impacts on ventilation performance, which are correlated in the form of power functions. Results suggest that NVDSFs with small incident angles (<40°) is better. At similar trends, the NVDSF performance is also better under solar intensities larger than 600 W/m2. On the other hand, configurations of NVDSFs also exert primary influences. The optimal cavity gap is found ranging between 0.15–0.3 m, and the ventilation rate increases until a vent height of 0.4 m. This study demonstrates that a significant improvement in ventilation efficiency can be achieved simply by changing the glazing type.

How to cite this publication

Yao Tao, Haihua Zhang, Dongmei Huang, Chuangang Fan, Jiyuan Tu, Long Shi (2021). Ventilation performance of a naturally ventilated double skin façade with low-e glazing. Energy, 229, pp. 120706-120706, DOI: 10.1016/j.energy.2021.120706.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Energy

DOI

10.1016/j.energy.2021.120706

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access