0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessEquipping wearable electronics with special functions will endow them with more additional values and more comprehensive practical performance. Here, we report an ultraviolet (UV)-protective, self-cleaning, antibacterial, and self-powered all-nanofiber-based triboelectric nanogenerator (TENG) for mechanical energy harvesting and self-powered sensing, which is fabricated with Ag nanowires (NWs)/TPU nanofibers and the TiO2@PAN networks through a facile electrospinning method. Due to the added TiO2 nanoparticles (NPs), the TENG presents excellent UV-protective performance, including the ultraviolet protection factor (UPF) of ∼204, the transmittance of UVA (TUVA) of ∼0.0574%, and the transmittance of UVB (TUVB) ∼0.107%. Furthermore, under solar lighting for 25 min, most surface contamination can be degraded, and the decreased power output would be recovered. Owing to the coupled effects of TiO2 NPs and Ag NWs, the TENG shows excellent antibacterial activity against Staphylococcus aureus. Due to the micro-to-nano hierarchical porous structure, the all-nanofiber-based TENG can serve as self-powered pedometers for detecting and tracking human motion behaviors. As a multifunctional self-powered device, the TENG prompts various applications in the fields of micro/nanopower sources, human movement monitoring, and human-machine interfaces, potentially providing an alternative energy solution and a multifunctional interactive platform for the next-generation wearable electronics.
Yang Jiang, Kai Dong, Jie An, Fei Liang, Jia Yi, Peng Xiao, Chuan Ning, Cuiying Ye, Zhong Lin Wang (2021). UV-Protective, Self-Cleaning, and Antibacterial Nanofiber-Based Triboelectric Nanogenerators for Self-Powered Human Motion Monitoring. , 13(9), DOI: https://doi.org/10.1021/acsami.0c22670.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
9
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acsami.0c22670
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access