0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessFilterable microorganisms participate in dissolved organic carbon (DOC) cycling in freshwater systems, however their exact functional role remains unknown. We determined the taxonomic identity and community dynamics of prokaryotic microbiomes in the 0.22 µm-filtered fraction and unfiltered freshwater from the Conwy River (North Wales, UK) in microcosms and, using targeted metabolomics and 14C-labelling, examined their role in the utilization of amino acids, organic acids and sugars spiked at environmentally-relevant (nanomolar) concentrations. To identify changes in community structure, we used 16S rRNA amplicon and shotgun sequencing. Unlike the unfiltered water samples where the consumption of DOC was rapid, the filtered fraction showed a 3-day lag phase before the consumption started. Analysis of functional categories of clusters of orthologous groups of proteins (COGs) showed that COGs associated with energy production increased in number in both fractions with substrate addition. The filtered fraction utilized low-molecular-weight (LMW) DOC at much slower rates than the whole community. Addition of nanomolar concentrations of LMW DOC did not measurably influence the composition of the microbial community nor the rate of consumption across all substrate types in either fraction. We conclude that due to their low activity, filterable microorganisms play a minor role in LMW DOC processing within a short residence time of lotic freshwater systems.
Lydia-Ann J. Ghuneim, Marco A. Distaso, Tatyana N. Chernikova, Rafael Bargiela, Evgenii A. Lunev, Aleksei A. Korzhenkov, Stepan V. Toshchakov, David Rojo, Coral Barbas, Manuel Ferrer, Olga V. Golyshina, Peter N. Golyshin, Davey L Jones (2020). Utilization of low-molecular-weight organic compounds by the filterable fraction of a lotic microbiome. FEMS Microbiology Ecology, 97(2), DOI: 10.1093/femsec/fiaa244.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
13
Datasets
0
Total Files
0
Language
English
Journal
FEMS Microbiology Ecology
DOI
10.1093/femsec/fiaa244
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access