0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Governments across Europe are preparing for the emergence from lockdown, in phases, to prevent a resurgence in cases of COVID-19. Along with social distancing (SD) measures, contact tracing – find, track, trace and isolate (FTTI) policies are also being implemented. Here, we investigate FTTI policies in terms of their impact on the endemic equilibrium. We used a generative model – the dynamic causal ‘Location’, ‘Infection’, ‘Symptom’ and ‘Testing’ (LIST) model to identify testing, tracing, and quarantine requirements. We optimised LIST model parameters based on time series of daily reported cases and deaths of COVID-19 in England— and based upon reported cases in the nine regions of England and in all 150 upper tier local authorities. Using these optimised parameters, we forecasted infection rates and the impact of FTTI for each area—national, regional, and local. Predicting data from early June 2020, we find that under conditions of medium-term immunity, a ‘40%’ FTTI policy (or greater), could reach a distinct endemic equilibrium that produces a significantly lower death rate and a decrease in ICU occupancy. Considering regions of England in isolation, some regions could substantially reduce death rates with 20% efficacy. We characterise the accompanying endemic equilibria in terms of dynamical stability, observing bifurcation patterns whereby relatively small increases in FTTI efficacy result in stable states with reduced overall morbidity and mortality. These analyses suggest that FTTI will not only save lives, even if only partially effective, and could underwrite the stability of any endemic steady-state we manage to attain.
Rosalyn Moran, Alexander J. Billig, Maell Cullen, Adeel Razi, Jean Daunizeau, Rob Leech, Karl Friston (2020). Using the LIST model to Estimate the Effects of Contact Tracing on COVID-19 Endemic Equilibria in England and its Regions. , DOI: https://doi.org/10.1101/2020.06.11.20128611.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2020
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1101/2020.06.11.20128611
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access