0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessKinetic control is a powerful means for maneuvering the twin structure and shape of metal nanocrystals and thus optimizing their performance in a variety of applications. However, there is only a vague understanding of the explicit roles played by reaction kinetics due to the lack of quantitative information about the kinetic parameters. With Pd as an example, here we demonstrate that kinetic parameters, including rate constant and activation energy, can be derived from spectroscopic measurements and then used to calculate the initial reduction rate and further have this parameter quantitatively correlated with the twin structure of a seed and nanocrystal. On a quantitative basis, we were able to determine the ranges of initial reduction rates required for the formation of nanocrystals with a specific twin structure, including single-crystal, multiply twinned, and stacking fault-lined. This work represents a major step forward toward the deterministic syntheses of colloidal noble-metal nanocrystals with specific twin structures and shapes.
Yi Wang, Hsin-Chieh Peng, Jingyue Liu, Cheng Zhi Huang, Younan Xia (2015). Use of Reduction Rate as a Quantitative Knob for Controlling the Twin Structure and Shape of Palladium Nanocrystals. , 15(2), DOI: https://doi.org/10.1021/acs.nanolett.5b00158.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2015
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acs.nanolett.5b00158
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access