0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessPhosphorus (P) is an essential nutrient necessary for maintaining crop growth, however, it’s often used inefficiently within agroecosystems, driving industry to find new ways to deliver P to crops sustainably. We aim to combine traditional soil and crop measurements with climate-driven mathematical models, to give insight into optimising the timing and placement of fertiliser applications. The whole plant crop model combines an above-ground leaf model with an existing spatially explicit below-ground root-soil model to estimate plant P uptake and above ground dry mass. We let P-dependent photosynthesis estimate carbon (C) mass, which in conjunction with temperature sets the root-growth-rate. The addition of the leaf model achieved a better estimate of two sets of barley field trial data for plant P uptake, compared with just the root-soil model alone. Furthermore, discrete fertiliser placement increases plant P uptake by up to 10 % in comparison to incorporating fertiliser. By capturing essential plant processes we are able to accurately simulate P and C use and water and P movement during a cropping season. The powerful combination of mechanistic modelling and experimental data allows physiological processes to be quantified accurately and useful agricultural predictions for site specific locations to be made.
James Heppell, Sevil Payvandi, Peter J. Talboys, Konstantinos C. Zygalakis, David Langton, R. Sylvester‐Bradley, A.C. Edwards, Robin L. Walker, P. J. A. Withers, Davey L Jones, Tiina Roose (2016). Use of a coupled soil-root-leaf model to optimise phosphate fertiliser use efficiency in barley. Plant and Soil, 406(1-2), pp. 341-357, DOI: 10.1007/s11104-016-2883-4.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
11
Datasets
0
Total Files
0
Language
English
Journal
Plant and Soil
DOI
10.1007/s11104-016-2883-4
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access