RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Urban natural capital accounts: developing a novel approach to quantify air pollution removal by vegetation

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2019

Urban natural capital accounts: developing a novel approach to quantify air pollution removal by vegetation

0 Datasets

0 Files

en
2019
Vol 8 (4)
Vol. 8
DOI: 10.1080/21606544.2019.1597772

Get instant academic access to this publication’s datasets.

Create free accountHow it works
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Laurence Jones
Laurence Jones

UK Centre for Ecology & Hydrology

Verified
Laurence Jones
Massimo Vieno
Alice Fitch
+10 more

Abstract

Air pollution presents a major risk to human health, resulting in premature deaths and reduced quality of life. Quantifying the role of vegetation in reducing air pollution concentrations is an important contribution to urban natural capital accounting. However, most current methods to calculate pollution removal are static, and do not represent atmospheric transport of pollutants, or interactions among pollutants and meteorology. An additional challenge is defining urban extent in a way that captures the green and blue infrastructure providing the service in a consistent way. We developed a refined urban morphology layer which incorporates urban green and blue space. We then applied an atmospheric chemistry transport model (EMEP4UK) to calculate pollutant removal by urban natural capital for pollutants including PM2.5, NO2, SO2, O3. We calculated health benefits directly from the change in pollutant concentrations (i.e. exposure) rather than from tonnes of pollutant removed. Urban natural capital across Britain removes 28,700 tonnes of PM2.5, NO2, SO2, O3. The economic value of the health benefits are substantial: £136 million in 2015, resulting from 900 fewer respiratory hospital admissions, 220 fewer cardiovascular hospital admissions, 240 fewer deaths and 3600 fewer Life Years Lost.

How to cite this publication

Laurence Jones, Massimo Vieno, Alice Fitch, Edward Carnell, Claudia Steadman, Philip Cryle, Mike Holland, Eiko Nemitz, Dan Morton, Jane Hall, Gina Mills, Ian A. Dickie, Stefan Reis (2019). Urban natural capital accounts: developing a novel approach to quantify air pollution removal by vegetation. , 8(4), DOI: https://doi.org/10.1080/21606544.2019.1597772.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

13

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1080/21606544.2019.1597772

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration