0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessUsing in situ X-ray radiography, we investigated unidirectional freezing of titanium dioxide suspensions. We showed how processing additives, which are generally used for ice-templating, strongly modified freezing dynamics during the solidification process. We observed and identified different freezing regimes by varying the amount of dispersant, binder, or poly(ethylene glycol) (PEG). We demonstrated that because each regime corresponds to a given final structure understanding the particle motion and redistribution at the ice-front level was essential. We also examined the transition from a random particles-entrapment regime to a well-defined lamellar regime and proposed and discussed two mechanisms by which additives might affect the solidification process.
Benjamin Delattre, Hao Bai, Robert O. Ritchie, J. De Coninck, Antoni P. Tomsia (2013). Unidirectional Freezing of Ceramic Suspensions: In Situ X-ray Investigation of the Effects of Additives. ACS Applied Materials & Interfaces, 6(1), pp. 159-166, DOI: 10.1021/am403793x.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
ACS Applied Materials & Interfaces
DOI
10.1021/am403793x
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access