0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe interaction of Lewis acids and bases in both classical Lewis adducts and frustrated Lewis pairs (FLPs) is investigated to elucidate the role that London dispersion plays in different situations. The analysis comprises 14 different adducts between tris(pentafluorophenyl)borane and a series of phosphines, carbenes, and amines with various substituents, differing in both steric and electronic properties. The domain-based local pair natural orbital coupled-cluster (DLPNO-CCSD(T)) method is used in conjunction with the recently introduced local energy decomposition (LED) analysis to obtain state-of-the-art dissociation energies and, at the same time, a clear-cut definition of the London dispersion component of the interaction, with the ultimate goal of aiding in the development of designing principles for acid/base pairs with well-defined bonding features and reactivity. In agreement with previous DFT investigations, it is found that the London dispersion dominates the interaction energy in FLPs, and is also remarkably strong in Lewis adducts. In these latter systems, its magnitude can be easily modulated by modifying the polarizability of the substituents on the basic center, which is consistent with the recently introduced concept of dispersion energy donors. By counteracting the destabilizing energy contribution associated with the deformation of the monomers, the London dispersion drives the stability of many Lewis adducts.
Giovanni Bistoni, Alexander A. Auer, Frank Neese (2016). Understanding the Role of Dispersion in Frustrated Lewis Pairs and Classical Lewis Adducts: A Domain‐Based Local Pair Natural Orbital Coupled Cluster Study. Chemistry - A European Journal, 23(4), pp. 865-873, DOI: 10.1002/chem.201604127.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
Chemistry - A European Journal
DOI
10.1002/chem.201604127
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access