0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSkin sensors are of paramount importance for flexible wearable electronics, which are active in medical diagnosis and healthcare monitoring. Ultrahigh sensitivity, large measuring range, and high skin conformability are highly desirable for skin sensors. Here, an ultrathin flexible piezoresistive sensor with high sensitivity and wide detection range is reported based on hierarchical nanonetwork structured pressure-sensitive material and nanonetwork electrodes. The hierarchical nanonetwork material is composed of silver nanowires (Ag NWs), graphene (GR), and polyamide nanofibers (PANFs). Among them, Ag NWs are evenly interspersed in a PANFs network, forming conductive pathways. Also, GR acts as bridges of crossed Ag NWs. The hierarchical nanonetwork structure and GR bridges of the pressure-sensitive material enable the ultrahigh sensitivity for the pressure sensor. More specifically, the sensitivity of 134 kPa–1 (0–1.5 kPa) and the low detection of 3.7 Pa are achieved for the pressure sensor. Besides, the nanofibers act as a backbone, which provides effective protection for Ag NWs and GR as pressure is applied. Hence, the pressure sensor possesses an excellent durability (>8000 cycles) and wide detection range (>75 kPa). Additionally, ultrathin property (7 μm) and nanonetwork structure provide high skin conformability for the pressure sensor. These superior performances lay a foundation for the application of pressure sensors in physiological signal monitoring and pressure spatial distribution detection.
Xin Li, You Fan, Hua Yang Li, Jinwei Cao, Yu Chuan Xiao, Ying Wang, Fei Liang, Hai Lu Wang, Yang Jiang, Zhong Lin Wang, Guang Zhu (2020). Ultracomfortable Hierarchical Nanonetwork for Highly Sensitive Pressure Sensor. , 14(8), DOI: https://doi.org/10.1021/acsnano.9b10230.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
11
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acsnano.9b10230
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access