0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn conventional terrestrial cellular networks, mobile terminals (MTs) at the cell edge often pose a performance bottleneck due to their long distances from the serving ground base station (GBS), especially in hotspot period when the GBS is heavily loaded. This paper proposes a new hybrid network architecture by leveraging the use of unmanned aerial vehicle (UAV) as an aerial mobile base station, which flies cyclically along the cell edge to offload data traffic for cell-edge MTs. We aim to maximize the minimum throughput of all MTs by jointly optimizing the UAV's trajectory, bandwidth allocation and user partitioning. We first consider orthogonal spectrum sharing between the UAV and GBS, and then extend to spectrum reuse where the total bandwidth is shared by both the GBS and UAV with their mutual interference effectively avoided. Numerical results show that the proposed hybrid network with optimized spectrum sharing and cyclical multiple access design significantly improves the spatial throughput over the conventional GBS-only network; while the spectrum reuse scheme provides further throughput gains at the cost of slightly higher complexity for interference control. Moreover, compared to the conventional small-cell offloading scheme, the proposed UAV offloading scheme is shown to outperform in terms of throughput, besides saving the infrastructure cost.
Jiangbin Lyu, Yong Zeng, Rui Zhang (2018). UAV-Aided Offloading for Cellular Hotspot. IEEE Transactions on Wireless Communications, 17(6), pp. 3988-4001, DOI: 10.1109/twc.2018.2818734.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Wireless Communications
DOI
10.1109/twc.2018.2818734
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access