0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract With the Moore's law hitting the bottleneck of scaling‐down in size (below 10 nm), personalized and multifunctional electronics with an integration of 2D materials and self‐powering technology emerge as a new direction of scientific research. Here, a tunable tribotronic dual‐gate logic device based on a MoS 2 field‐effect transistor (FET), a black phosphorus FET and a sliding mode triboelectric nanogenerator (TENG) is reported. The triboelectric potential produced from the TENG can efficiently drive the transistors and logic devices without applying gate voltages. High performance tribotronic transistors are achieved with on/off ratio exceeding 106 and cutoff current below 1 pA μm –1 . Tunable electrical behaviors of the logic device are also realized, including tunable gains (improved to ≈13.8) and power consumptions (≈1 nW). This work offers an active, low‐power‐consuming, and universal approach to modulate semiconductor devices and logic circuits based on 2D materials with TENG, which can be used in microelectromechanical systems, human–machine interfacing, data processing and transmission.
Guoyun Gao, Bensong Wan, Xingqiang Liu, Qijun Sun, Xiaonian Yang, Longfei Wang, Caofeng Pan, Zhong Lin Wang (2018). Tunable Tribotronic Dual‐Gate Logic Devices Based on 2D MoS<sub>2</sub> and Black Phosphorus. , 30(13), DOI: https://doi.org/10.1002/adma.201705088.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
8
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/adma.201705088
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access