RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Tunable Tribotronic Dual‐Gate Logic Devices Based on 2D MoS<sub>2</sub> and Black Phosphorus

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2018

Tunable Tribotronic Dual‐Gate Logic Devices Based on 2D MoS<sub>2</sub> and Black Phosphorus

0 Datasets

0 Files

en
2018
Vol 30 (13)
Vol. 30
DOI: 10.1002/adma.201705088

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Guoyun Gao
Bensong Wan
Xingqiang Liu
+5 more

Abstract

Abstract With the Moore's law hitting the bottleneck of scaling‐down in size (below 10 nm), personalized and multifunctional electronics with an integration of 2D materials and self‐powering technology emerge as a new direction of scientific research. Here, a tunable tribotronic dual‐gate logic device based on a MoS 2 field‐effect transistor (FET), a black phosphorus FET and a sliding mode triboelectric nanogenerator (TENG) is reported. The triboelectric potential produced from the TENG can efficiently drive the transistors and logic devices without applying gate voltages. High performance tribotronic transistors are achieved with on/off ratio exceeding 106 and cutoff current below 1 pA μm –1 . Tunable electrical behaviors of the logic device are also realized, including tunable gains (improved to ≈13.8) and power consumptions (≈1 nW). This work offers an active, low‐power‐consuming, and universal approach to modulate semiconductor devices and logic circuits based on 2D materials with TENG, which can be used in microelectromechanical systems, human–machine interfacing, data processing and transmission.

How to cite this publication

Guoyun Gao, Bensong Wan, Xingqiang Liu, Qijun Sun, Xiaonian Yang, Longfei Wang, Caofeng Pan, Zhong Lin Wang (2018). Tunable Tribotronic Dual‐Gate Logic Devices Based on 2D MoS<sub>2</sub> and Black Phosphorus. , 30(13), DOI: https://doi.org/10.1002/adma.201705088.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2018

Authors

8

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/adma.201705088

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access